
1

Adding Assurance to Automatically Generated Code
Ewen Denney†, Bernd Fischer‡, Johann Schumann‡

†QSS / ‡RIACS, NASA Ames Research Center, {edenney,fisch,schumann}@email.arc.nasa.gov

Abstract— Code to estimate position and attitude of a space-
craft or aircraft belongs to the most safety-critical parts of ¤ight
software. The complex underlying mathematics and abundance of
design details make it error-prone and reliable implementations
costly. AutoFilter is a program synthesis tool for the automatic
generation of state estimation code from compact speci£cations.
It can automatically produce additional safety certi£cates which
formally guarantee that each generated program individually sat-
is£es a set of important safety policies. These safety policies (e.g.,
array-bounds, variable initialization) form a core of properties
which are essential for high-assurance software. Here we describe
the AutoFilter system and its certi£cate generator and compare
our approach to the static analysis tool PolySpace.

I. INTRODUCTION

State estimation is the task of determining with the best
possible accuracy the position, attitude, and speed of a moving
vehicle from potentially noisy sensor measurements. Typical
sensors are gyros, accelerometers, and star trackers for a
spacecraft, or wheel rotation sensors for a planetary rover.
State estimation is the core of most guidance, navigation,
and control (GN&C) tasks; the state estimation code is thus
one of the most safety-critical, high-assurance components of
any GN&C system. However, as many missions (e.g., Mars
Climate Orbiter) have shown, such code is error-prone and
dif£cult to develop.

AUTOFILTER [1] is an automated code-generator which
takes as input a compact, high-level description of a state
estimation task (in the form of differential equations) and
produces highly documented C or C++ code. From a user’s
point of view, the system can be seen as an intelligent compiler
and, as is the case with compilers, the correctness of the
generated code depends on the correctness of the generator
itself. However, even though AUTOFILTER has a formal basis,
a full veri£cation is not feasible due to the size, complexity,
and dynamic nature of the system.

We have thus developed and implemented a product-
oriented certi£cation approach in which checks are performed
on each and every generated program rather than on the
generator (i.e., AUTOFILTER) itself. We focus on safety prop-
erties, which are generally accepted as important for quality
assurance and are used in code reviews of high-assurance
software.

Our tool uses program veri£cation techniques based on
Hoare logic and processes logical pre- and post-conditions
statement by statement to produce proof obligations. These
are then processed further by an automatic theorem prover.
However, such techniques require additional program annota-
tions (usually loop invariants) which makes their application
very hard in practice. We overcome this obstacle by extending

AUTOFILTER to synthesize simultaneously the code and all
required annotations. This enables a fully automatic certi£ca-
tion which is transparent to the user and produces machine-
readable certi£cates showing that the generated code does not
violate the given safety policies.

II. AUTO-GENERATION OF STATE ESTIMATION CODE

A state estimation problem is de£ned by (i) the system state,
which is given in the form of a vector of state variables, (ii) the
process model, which describes how the system state evolves
over time, and (iii) the measurement model, which relates the
sensor readings to the system state. For example, a very simple
planetary rover might be modeled in terms of the speed vL and
vR of its left and right wheels, respectively, and the yaw y of
the chassis. The system state is thus described adequately by
the state vector x = 〈vL, vR, y〉. The discrete process model
is then given as a linear function xt+1 = Hxt +w where H is
a state transition matrix, and w is Gaussian noise. If the rover
has sensors which measure the speed of the wheels directly,
and a gyro to measure the yaw, the measurement model is
given in similar terms, i.e., x = z +v for measurements z and
Gaussian noise v.

An AUTOFILTER speci£cation allows a concise formulation
of such models; it also includes details on the desired software
architecture. From such speci£cations, code is derived by
repeated application of schemas. A schema can be seen as
a high-level macro or axiom which can be applied to (sub-)
problems of a certain structure, e.g., linear process models.
AUTOFILTER performs substantial symbolic calculations (e.g.,
linearization, discretization, Taylor series expansion) to make
schemas applicable. When a schema is applied, code is gener-
ated by instantiating an algorithm skeleton which represents,
e.g., an appropriate variant of a Kalman £lter algorithm. The
code fragments from the individual schema applications are
assembled and the entire code is optimized and then translated
into a target platform; currently, AUTOFILTER supports C
(both stand-alone and with the Matlab and Octave libraries)
and Modula-2. Depending on the speci£c platform, the neces-
sary matrix operations are mapped to library calls or to nested
loops. Typically, the £nal code is between 300 and 800 lines
of C or C++ code including auto-generated comments.

III. PRODUCT-ORIENTED CERTIFICATION

The safety policies checked by our system describe either
language-speci£c or domain-speci£c properties which a safe
program must satisfy. A typical example of a language-speci£c
property (C/C++) is array-bounds safety; violations can lead
to serious ¤aws, as many buffer-overrun attacks have shown.



Checks for consistency of physical units or symmetry of
matrices are speci£cally tailored to the application domain and
provide additional assurance.

Our system currently handles array-bounds (i.e., array in-
dices must be within bounds), variable-initialization (i.e.,
variables must be initialized before use), variable-usage (i.e.,
all input/output variables are used), and matrix symmetry.
This last property is speci£c to the AUTOFILTER domain, and
ensures that the code does not result in skewed covariance
matrices. However, it does not yet take numerical round-off
errors into account. All of these safety properties have been
identi£ed as important by a recent study within NASA and
the aerospace industry [2].

The properties are checked using a standard approach
based on Hoare rules. Hoare rules use triples of the form
P {C} Q, meaning “if pre-condition P holds before execution
of statement C, then post-condition Q holds after”. For each
kind of statement and for each safety property, such a Hoare
rule is given. Starting with the £nal postcondition true, a
veri£cation condition generator (VCG) applies these rules
backwards and computes, statement by statement, £rst-order
logic formulae (veri£cation conditions, VCs) which describe
the safety obligations. The VCG needs auxiliary annotations
in the code (mostly loop invariants) to perform this step auto-
matically. However, since we know at synthesis time (i) what
form the code will take and (ii) which safety policy is used,
AUTOFILTER can generate the appropriate annotations. The
annotation generation is interleaved with the code generation,
and annotation skeletons, which are part of the schema, are
instantiated in parallel with the algorithm skeleton. The VCs
are then simpli£ed and fed into an automated theorem prover,
in our case E-Setheo. If and only if all VCs can be shown
to be true, then the property holds for the entire program.
Finally, the proofs can be double-checked by an independent
proof checker tool to yield a tamper-proof certi£cate. Figure 1
shows the overall architecture of the system; for more details
see [3], [4].

Certification

Analysis

Simplifier

Checker

Proof Certificate

VCG

Theorem

Prover

VCs

Proof

Propagator

Propagated Code

Synthesizer
Annotated Code

Synthesis

policy

Safety

Specification

simplified VCs

Fig. 1. Architecture of the AUTOFILTER program synthesis system with
automatic certi£cate generation.

IV. EXPERIMENTAL RESULTS

Table I shows the results for two speci£cations and the dif-
ferent policies supported by AUTOFILTER. The £rst example is
taken from the attitude control system of NASA’s Deep Space

One mission. The second example speci£es a component in
a simulation for the Space Shuttle docking procedure at the
International Space Station. The number of generated VCs
depends on the safety policy and the synthesized code but
for both examples E-Setheo was able to prove all tasks. All
times have been measured on a 2GHz/2GB standard PC.

TABLE I

CERTIFICATION RESULTS AND TIMES

Spec. Policy LoC Tsynth #VCs Tproof TPoly

ds1 array 431 + 0 5.5s 1 0.1s
init 431 + 86 11.4s 74 70.6s

}

22m 28s
in-use 431 + 60 8.1s 21 29.5s
symm 431 + 83 70.8s 865 756.7s N/A

thruster array 755 + 0 24.7s 4 2.9s
init 755 + 87 39.7s 71 64.9s

}

32m 6s
in-use 755 + 59 33.3s 28 32.4s
symm 755 + 87 66.2s 480 472.8s N/A

The numbers for the program size (LoC) show the size
of code itself separately from the size of the auto-generated
annotations; note that the latter varies signi£cantly with the
safety policy and can make up a substantial fraction of the
overall code size. The synthesis times Tsynth include the
time spent on generating and simplifying the VCs, with the
latter being the dominating factor, but not the proof time
Tproof . Overall, the runtimes demonstrate that our approach
to automatic certi£cation of safety properties is feasible.

We also compared our approach with the state-of-the-art
static analysis tool PolySpace; its runtimes are shown in the
last column of the table. The results cannot be compared
directly since PolySpace has a £xed built-in safety policy
which is more comprehensive than any single policy in our
framework. However, the combination of the three language-
speci£c properties already provides a good approximation, but
requires less time. Moreover, static analysis tools raise a large
number of “false alarms”, especially in cases with complicated
array accesses, which is common in our domain.

V. CONCLUSIONS

We have developed an extension to the AUTOFILTER code
generator that can automatically check important safety prop-
erties for the generated code. Of course, this is not equivalent
to full functional veri£cation so the approach does not obviate
the need for testing. However, in principle, it is complete for
any given safety policy. In practice, the prover can fail to
prove some provable VCs and thus raise false alarms but
their number is much lower than typically achieved with
state-of-the-art static analysis tools. Our current efforts focus
on integrating additional safety properties and extending the
approach to synthesized code that has been modi£ed manually.

REFERENCES

[1] J. Whittle and J. Schumann, “Automating the implementation of Kalman-
£lter algorithms,” 2003, in review.

[2] S. Nelson and J. Schumann, “What makes a code review trustworthy?,”
in Proc. HICSS-37. IEEE, 2004, to appear.

[3] M. Whalen, J. Schumann, and B. Fischer, “Synthesizing certi£ed code,”
in Proc. FME 2002, LNCS 2391, pp. 431–450. Springer, 2002.

[4] E. Denney and B. Fischer, “Correctness of source-level safety policies,”
in Proc. FM 2003, LNCS 2805, pp. 894–913. Springer, 2003.


